ANG II inhibits insulin-mediated production of PI 3,4,5-trisphosphates via a Ca -dependent but PKC-independent pathway in the cardiomyocytes
نویسندگان
چکیده
Ikushima M, Ishii M, Ohishi M, Yamamoto K, Ogihara T, Rakugi H, Kurachi Y. ANG II inhibits insulin-mediated production of PI 3,4,5-trisphosphates via a Ca -dependent but PKCindependent pathway in the cardiomyocytes. Am J Physiol Heart Circ Physiol 299: H680 –H689, 2010. First published July 2, 2010; doi:10.1152/ajpheart.00220.2009.—Insulin resistance (IR) is a condition where different organs are refractory to insulin stimulation of glucose uptake. ANG II has been suggested to be involved in the development of IR in the heart. The precise mechanism by which this occurs is still unknown. Here we have used dynamic fluorescent imaging techniques to show that ANG II inhibits insulin production of phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] in cardiac myocytes. Fluorophore (Venus)-conjugated cAMP-dependent protein kinase-pleckstrin homology domain, which specifically binds to PI(3,4,5)P3, was transfected in neonatal rat cardiac myocytes. Insulin induced a robust increase in the fluorescence intensity at the cell surface, which was diminished by application of ANG II. The inhibitory action of ANG II was antagonized by RNH-6270 (an angiotensin type 1 receptor antagonist) but not by PD-122370 (an angiotensin type 2 receptor antagonist). BAPTA-AM (Ca chelator) largely attenuated the ANG II effect, whereas K-252b (PKC inhibitor) did not. Furthermore, an elevation of intracellular Ca induced by ionomycin mimicked the ANG II effect. Therefore, it is suggested that ANG II antagonizes insulin-mediated production of PI(3,4,5)P3 via a Ca dependent but PKC-independent pathway in cardiac myocytes.
منابع مشابه
ANG II inhibits insulin-mediated production of PI 3,4,5-trisphosphates via a Ca2+-dependent but PKC-independent pathway in the cardiomyocytes.
Insulin resistance (IR) is a condition where different organs are refractory to insulin stimulation of glucose uptake. ANG II has been suggested to be involved in the development of IR in the heart. The precise mechanism by which this occurs is still unknown. Here we have used dynamic fluorescent imaging techniques to show that ANG II inhibits insulin production of phosphatidylinositol 3,4,5-tr...
متن کاملBuckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway
Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...
متن کاملBuckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway
Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...
متن کاملA novel signaling pathway of ADP-ribosyl cyclase activation by angiotensin II in adult rat cardiomyocytes.
ADP-ribosyl cyclase (ADPR-cyclase) produces a Ca(2+)-mobilizing second messenger, cADP-ribose (cADPR), from NAD(+). In this study, we investigated the molecular basis of ADPR-cyclase activation in the ANG II signaling pathway and cellular responses in adult rat cardiomyocytes. The results showed that ANG II generated biphasic intracellular Ca(2+) concentration increases that include a rapid tra...
متن کاملAngiotensin II inhibits native bTREK-1 K+ channels through a PLC-, kinase C-, and PIP2-independent pathway requiring ATP hydrolysis.
Angiotensin II (ANG II) inhibits bTREK-1 (bovine KCNK2) K(+) channels in bovine adrenocortical cells through a Gq-coupled AT(1) receptor by activation of separate Ca(2+)- and ATP hydrolysis-dependent signaling pathways. Whole cell patch-clamp recording from bovine adrenal zona fasciculata (AZF) cells was used to characterize the ATP-dependent signaling mechanism for inhibition of bTREK-1 by ANG...
متن کامل